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Abstract — Electrocardiogram (ECG) interpretation is an important medical diagnostic tool for 
diagnosing conditions of the heart. The use of neural networks aiming to assist cardiologists in the 
interpretation of ECG signals show great potential and could lead to improved patient outcomes. 
Here, I compared and developed several neural network architectures for classifying ECG signals 
from widely available datasets. Additionally, I compared modelling results when using augmented 
data and evaluated how well the models trained on one dataset classified data from another dataset. 
I found that the presented neural network architectures accurately classified pathological ECG 
signals, comparable to that of several published articles. I also found that data augmentation 
diminished overall performance, suggesting the approach taken was too simple. Finally, I found 
that transfer learning is possible but, classification performance was poor on pathological ECG.  
 
Keywords —ECG, deep neural networks, architecture optimization, transfer 
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1.0 Introduction  
An electrocardiogram (ECG) is a measurement of the electrical activity of the heart muscle. Each 
time the heart pumps blood it produces a characteristic time series waveform with distinct and 
identifiable features (right, Figure 1). In medicine, the ECG signal is used as a diagnostic tool to 
determine if the heart is functioning as expected.  When someone has a pathology, such as heart 
valve leaks or tears, there can be subtle but detectable changes in the ECG signal (left, Figure 1). 
The ability to detect the presence of a pathology early could lead to quick diagnosis and improved 
outcomes for patients, not to mention reductions in long term healthcare costs [1]–[4]. 

Computer-aided interpretation of ECG signals has been an increasingly important tool in the 
clinical workflow, with first attempts dating back to the late 1950s [3]. Although sophisticated 
computer algorithms have shown promise, high rates of misdiagnosis are common (~50%). The 
presence of noise, variability in wave morphology between patients, and the mixture of both 
subjective and objective characteristics makes ECG classification a difficult problem, where even 
experienced cardiologists can disagree on prognosis [5]. The use of deep neural networks has led 
to major advances in image classification, speech recognition, and many medical diagnostics [1], 
[6], [7]. The ability of deep neural networks to recognize patterns and learn features of time varying 
signals without extensive preprocessing makes them particularly well suited for ECG 
classification.  
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Figure 1: Example characteristics of normal and pathological ECG signals. 

There are many possible pathologies that can be observed in ECG waveforms. It is common for 
researchers to study only certain more common pathologies, or group pathologies into categories 
due to limitations in the amount of data on pathological ECG signals [1], [4], [8]. In general, many 
research groups have shown great success with ECG classification using neural networks, 
achieving low misclassification errors, and accuracies nearing 99% [2], [7], [9]–[13]. Although 
the results are profound and have led to startup companies and major advances, the caveats are 
small representative test sets, with limited patients, and limited variations in the ECG pathologies 
themselves. This increases the chances of missing abnormalities that may exist warranting expert 
cardiologist option (who can also miss these suitable features).  Recently, a monumental effort led 
by Andrew Ng’s group at Stanford university, proposed a neural network architecture for 
evaluating up to 12 different pathologies (more than has ever been proposed before) [3], [7]. This 
effort was only possible due to the extensive amount of data the group was able to collect (over 
50,000 patients with all ECG annotations performed by cardiologists) which made it possible to 
train and evaluate their model.   

This project here aims to use deep neural networks to classify normal and pathological ECG 
waveforms from publically available datasets. Specifically, there are several objectives. The first 
objective is build, develop, and train a convolutional neural network using a previously established 
architecture and compare its ability to classify normal and 4 pathological ECG signals to the ability 
of two author developed architectures. The second objective is characterize the performance 
variations when a simple data augmentation is performed on the dataset. Finally, the third objective 
is to quantify the performance of the models established in aim 1 and 2 on a novel ECG dataset 
via transfer learning.  
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2.0 Methods  
 
2.1 Data Curation  
ECG data was taken from the MIT-BIH arrhythmia (48 subjects, f = 360 Hz) and the PTB 
Diagnostic ECG (290 subjects, f= 1000 Hz) datasets as made available through Kaggle courtesy 
of [1]. Both of these ECG datasets have been labelled by trained cardiologists. The dataset has 
some preprocessing steps that were taken which modify it from its raw time-series form. In brief, 
the continuous ECG voltage signal was divided into 10s windows, voltage normalized to be 
between 0-1, peaks were identified using the first derivative, and the median time interval between 
peaks was determined (T_interval). Using the T_interval determined for each 10 second window, 
the signal was then divided up such that each frame starts from a peak and continues for 
1.2*T_interval. Lastly, to ensure the divisions of each new frame have a fixed length, each frame 
is padded with zeros to make its length equal to an array of 187 in length. Each interval is then 
given the corresponding label which the cardiologist has previously provided. This label is added 
to each array as the 188th value. These labels range are either normal or pathological as expressed 
in Table 1.  This type of beat extraction does not filter the signal or make any assumption about 
the morphology, which has and been shown as an effective method for ECG processing. A further 
and more detailed overview of these preprocessing steps is provided elsewhere [1].    
 
Table 1: The two datasets explored in this project MIT-BIH and PTB Diagnostic  

 
. 

2.2 Data Augmentation  
The number of representative samples for each class shows a large class imbalance (Table 1), 
where the majority of all data is of normal non-pathological ECG. To address this class imbalance 
I decided to perform a data augmentation on the minority classes [14]. It is generally suggested 
that augmenting just the training data increases reliability and generalization of the model [13]. 
With this in mind, the sample data was first split into 80% training, 20% testing. A 
StratifedShuffleSplit approach was taken such that the data was split equally amongst the classes. 
Next, the training data was further split such that 16% went into a separate validation set. The 
validation and testing sets were then set aside while a very simple data augmentation was 
performed on the training set for the MIT-BIH dataset (the main dataset explored in the bulk of 
this project).  The majority class (normal ECG) was first reduced down to 10,000 samples and the 
minority classes were resampled such that each class now contained the same amount of 
observations. Random Gaussian noise was injected to each sample of the resampled data to further 
increase generalizability. The amplitude of this noise was small (0.03-0.05) to help ensure each 
label kept its class (it is possible though that this could change the class, this is why a small amount 
of noise was used). A figurative representation of the data is shown Figure 2 and Table 2 shows 
the summary of the data after splitting and augmenting. 

ECG Class Label # samples % of Total ECG Class Label # samples % of Total
Normal 0 90589 82.8% Normal 0 10506 72.2

Fusion of Paced and Normal 1 2779 2.5% Abnormal 1 4046 27.8
Premature Ventricular Contraction 2 7236 6.6%

Atrial Premature 3 803 0.7%
Fusion of Ventricular and Normal 4 8039 7.3%

PTB Diagnostic ECGMIT-BIH ECG
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Table 2: The split MIT-BIH dataset showing the number of samples in each class as well as the newly 
formed augmented data set which down sampled the majority class and up sampled the minority.   

 
 
Figure 2: Raw data (MIT-BIH) from each category and data with Gaussian noise (augmented data).  

2.3 Network Architectures  
All networks were trained using the following set parameters: batch size = 64, patience = 20,    
epochs = 500. Model weights were set to be balanced meaning that for the augmented data these 
weights were just 1 but for the unbalanced data, the weights were balanced following the default 
approach proposed in Keras using callback functions. Learning rate was programed to have an 
exponential decay such that it started at 0.001, had 10,000 decay steps at a decay rate of 0.75. The 
Adam optimizer was used with beta_1 = 0.9 and beta_2, 0.999 set. The optimizer optimized for 
spare categorical cross entropy which is the recommended loss for this type of data [1].  
 
Model 1 is a convolutional neural network with 55,013 parameters based on the architecture 
proposed elsewhere [1]. Model 2 is a recurrent neural network (RNN) with long short term memory 
(LSTM) having 54,661 parameters. This model was developed following recommendations for 
building RNN’s and was hand tuned by trial and error during pilot experiments to include dropout 
[12]. RNN’s are well suited for time series data of this type and should work well in classifying 
the ECG signals [12], [15]. Model 3 is a deep neural network with variable layers that I developed. 
Since developing neural network architecture is not my expertise, I wanted to use numerical 
optimization to help develop a simple deep neural network. This process is further explained in 
section 2.4 Optimization. The model that trained on the non-augmented data converged on an 
architecture having 65,669 parameters. The model that trained on the augmented data converged 
on an architecture having 75,333 parameters (specific model details are provided in the Appendix). 
Please see all model layouts as provided in Figure 3. 
 

Training Set 1 Training Set 2
Non-Augmented Training  Validation Set Test Set Augmented Training  

% samples 64% 16% 20% 64%

Label number # samples # samples # samples # samples

Normal 0 57976 14495 18118 10000
1 1778 445 556 10000
2 4631 1158 1447 10000
3 514 128 161 10000
4 5145 1286 1608 10000

MIT-BIH ECG Dataset

Pathological
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Figure 3: Model 1: Convolutional neural network based on [1], Model 2: recurrent neural network (RNN) 
with long short term memory (LSTM), and Model 3: an optimization developed neural network with 
variables parameter and number of layers developed using package hyperopt [16]. 

2.4 Optimization  
An architecture optimization approach was implemented for Model 3 (Figure 3).  A numerical 
optimization was setup to minimize negative test accuracy as depicted by equation 1. The 
optimization routine first evaluated a possible model architecture based on possible options, then 
model parameters were generated and optimized by minimizing the spare categorical cross 
entropy, same as for the other models. The optimization model was improved over 40 epochs of 
optimization (i.e. 40 different possible architectures were explored and optimized). The best 
combination of model architecture and model parameters resulting in the lowest objective function 
(Equation 1) was chosen for further evaluation (resulting model specifics shown in Appendix). 
This optimization routine was setup up using hyperopt [16].    
 
Equation 1.                         𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 𝐅𝐅𝐅𝐅𝐅𝐅𝐎𝐎𝐎𝐎𝐎𝐎𝐅𝐅𝐅𝐅 =  min(−(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)) 
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2.5 Transfer Learning  
After training and evaluating the models on MIT-BIH dataset, I wanted to see how well the trained 
model would perform on a novel dataset, namely the PTB Diagnostic, which has only two classes: 
normal and pathological (all pathological signals grouped into one) (Table 1). To do this, I used 
the best trained model from each architecture and added two dense layers and an output node such 
that the models now went from the 5 output nodes (5 classes in the MIT-BIH dataset) through two 
dense layers and outputted either 0 or 1 (normal or pathological) as depicted in Figure 4. This 
bottlenecking approach was based on methodology proposed in literature [1]. The two added dense 
layers were then trained on the new data while the other model weights were left untouched.  
 

 
 
Figure 4: Approach used to add two additional dense layers to previously evaluated models. After some 
pilot experiments, the added dense layer was set to be a size of N =32 as is also recommend elsewhere [1].  

In addition to this approach, I evaluated how training deep layers after adding the two dense layers 
would affect the transfer learning. To evaluate this in a systematic way I also evaluated the effects 
of training 5 layers deep and training 8 layers deep and present this in my results.  
 
2.6 Metrics  
The following metrics were utilized in this study: recall, which reflects the accurate positive 
identification of the ECG label as defined by equation 2.  
 
Equation 2.                                           𝐑𝐑𝐎𝐎𝐎𝐎𝐑𝐑𝐑𝐑𝐑𝐑 = True Positive

True Positive+False Negative
 

 
Precision, which is the accurate positive identification—when the model predicted positive was it 
correct? This is defined by equation 3.  
 
Equation 3.                                  𝐏𝐏𝐏𝐏𝐎𝐎𝐎𝐎𝐎𝐎𝐏𝐏𝐎𝐎𝐅𝐅𝐅𝐅 = True Positive

True Positive+False Positive
 

 
The F1- score is a metric for comparing the performance as a ratio of the mean of the recall and 
precision. The higher the F1-score the better the model performs, is the best way to look at it. F1-
score is convenient to look at as it can be calculated for each label. In the context of our problem 
here this is a great metric to use to compare model performance as expressed in equation 4.  
 
Equation 4.                               𝐅𝐅𝐅𝐅 𝐒𝐒𝐎𝐎𝐅𝐅𝐏𝐏𝐎𝐎  = 2∗Recall∗Precision

Recall+ Precision
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The accuracy is the ratio between correctly predicted outcomes and the sum of all predictions. A 
relatively easy metric to understand for looking at global performance of the model as depicted by 
equation 5.  
 
Equation 5.                               𝐀𝐀𝐎𝐎𝐎𝐎𝐅𝐅𝐏𝐏𝐑𝐑𝐎𝐎𝐜𝐜   = True Positive+True Negative

True Positive+True Negative+False Positive+False Negative
 

 
 
Finally, the error matrix, also known as a confusion matrix is a convenient table that shows the 
percentage of classified or misclassified labels in a matrix (it is the recall measure expressed for 
every label). Figure 5 provides an example of how this table will be presented in the results of this 
research. The diagonals of the matrix express the accurate identification of the correct label and 
the closer this accuracy is to 100% the better the model did. Any numbers shown off the diagonal 
can be thought of as unfavourable as this expresses misclassification of the model.  
 

 
 

Figure 5: Example of an error matrix used for evaluating performance of a classification model. High 
accuracy scores across the diagonal indicates good classification.  

3.0 Results 
 
3.1 Network architecture influences performance  
Network architecture has a noticeable effect on the F1-score of each model, as can be seen in Table 
3. We can see that Model A has the highest overall F1-score when the data that the network is 
trained on is augmented (Model A, F1-Score = 0.954), but when the data the network is trained on 
is not augmented Model B performs best (Model B, F1-Score = 0.993).  We can further see that 
the models all have high accuracies meaning that their ability to perform this classification task is 
good. The one caveat here is that the testing data is heavily skewed towards normal ECG signals. 
If the model correctly classifies the normal ECG it can still achieve a high accuracy without 
correctly classifying pathological ECG.  
 
To better visualize the errors and misclassification occurring in the models, Figure 6 shows the 
error matrixes. Here we can see that all the models had a difficult time with the pathological label 
1(fusion of paced and normal) as indicated by the higher misclassifications (10-35%) of this label.  
The models performed exceptionally well at classifying the normal ECG signal which was 
especially noticeable when the data was trained on the non-augmented training set (achieving 
almost 100% for all three architectures). The ability to well classify the larger normal set also 
explains why we see such large model accuracies. In general, all the architectures were good at 
classifying the data regardless of the training dataset however, Model 1 one performed noticeably 

Normal 0
1
2
3
4

0 1 2 3 4

Pathological
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better than the other two models. Model 3 had misclassification errors higher than other models 
when it came to classifying pathological ECG signals vs. normal. 
 
Table 3: F1-scores for the 3 models trained on augmented and non-augmented datasets MIT BIT.  Green 
shading indicates best performance. The closer the F1-score is to 1 the better the model performed at 
classifying.  

 

Table 4:  Global accuracy metrics for the 3 models trained on augmented and non-augmented datasets. 
Green shading indicates best performance. If the model correctly classifies the normal ECG it can still 
achieve a high accuracy without correctly classifying pathological ECG. 

 
 

 

Figure 6: Error matrixes for the 3 models explored showing the results for models trained on augmented 
and non-augmented training sets. Blue shading indicates diagonal squares (100% is perfect classification), 
red shaded color indicates noticeable misclassifications, grey shading indicates low error (<2%).  

Augmented Training Model 1 Model 2 Model 3
Normal Normal 0.974 0.960 0.966

Fusion of Paced and Normal 0.680 0.588 0.679
Premature Ventricular Contraction 0.934 0.891 0.847

Atrial Premature 0.474 0.393 0.484
Fusion of Ventricular and Normal 0.975 0.972 0.910

Weighted Average 0.960 0.944 0.943
Macro Average 0.807 0.761 0.777

Non-Augmented Training Model 1 Model 2 Model 3
Normal Normal 0.992 0.997 0.989

Fusion of Paced and Normal 0.843 0.925 0.770
Premature Ventricular Contraction 0.961 0.984 0.936

Atrial Premature 0.799 0.895 0.757
Fusion of Ventricular and Normal 0.989 0.997 0.982

Weighted Average 0.985 0.993 0.978
Macro Average 0.917 0.960 0.887

F1-Score

Pathological

Pathological

Accuracy Model 1 Model 2 Model 3
Augmented Training 95.4% 93.2% 97.9%

Non-Augmented Training 98.5% 99.3% 94.0%

 # of samples
Normal 18118 0 95% 2% 1% 2% 0% 93% 3% 1% 2% 0% 96% 1% 1% 1% 1%

556 1 10% 89% 1% 0% 0% 10% 88% 2% 0% 0% 29% 68% 3% 0% 0%
1447 2 1% 0% 96% 2% 0% 1% 1% 94% 3% 0% 11% 0% 86% 2% 0%
161 3 2% 1% 6% 92% 0% 4% 0% 1% 94% 0% 12% 0% 4% 84% 0%

1608 4 2% 0% 1% 0% 97% 1% 0% 0% 0% 99% 4% 0% 2% 0% 94%

Normal 18118 0 99% 0% 0% 0% 0% 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
556 1 13% 87% 0% 0% 0% 11% 88% 1% 0% 0% 35% 64% 1% 0% 0%

1447 2 3% 1% 94% 1% 0% 1% 0% 98% 1% 0% 6% 0% 91% 3% 0%
161 3 12% 2% 6% 80% 0% 7% 0% 6% 88% 0% 20% 0% 3% 76% 0%

1608 4 1% 0% 0% 0% 99% 0% 0% 0% 0% 99% 3% 0% 0% 0% 97%
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Model 1 CNN Model 2 RNN Model 3 Optimization

Pathological

Training on Augmented Data 
Model 1 CNN Model 2 RNN Model 3 Optimization

Pathological

Training on Non-Augmented Data 
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3.2 Data augmentation decreased performance  
Data augmentation had a determinable effect on overall model performance as can be seen by 
looking at accuracy and loss performance for the three evaluated models shown in Figure 7. The 
model accuracy was lower and validation loss was higher for models that were trained on the 
augmented data set resulting in poorer F1-scores (Table 3), lower test accuracy (Table 4) and 
higher misclassification rates (Figure 6). 
 

 
Figure 7: Accuracy (top section) and objective function loss (lower section) for validation and training sets 
using augmented (dashed lines) and non-augmented (solid line) training sets.  

The augmented dataset required down sampling the majority class and up sampling the minority 
class.  Perhaps the approach taken using resample from the Keras toolbox and adding Gaussian 
noise was too simple with too many similar cases for the network to train on. It is important to 
note that there were some improvements on classifying the pathological classes when the models 
trained on the augmented data (Figure 6) but in general the models performed more poorly. More 
sophisticated augmentation techniques appear to be beneficial for ECG data classification and 
should be explored in future work [11].  
 
3.3 Transfer learning classification is strong on normal ECG but not on pathological   
Figure 8 shows the F1-scores for the transfer learning results comparing: training the 2 added 
layers, training 5 layers deep, and training up to 8 layers deep.   Applying the trained MIT-BIH 
models on a novel dataset resulted in a strong ability to classify the normal ECG signals but the 
ability to classify the pathological signal varied widely between models. Classifying the 
pathological data was particularly poor for the models trained on the augmented dataset. In terms 
of the F1-score, we can see in Figure 8 that model 3 had the best generalizability to this new 
dataset, resulting in the highest overall F1-score. It is interesting to note that model 3 had the 
poorest (although was still good at) classification performance for the MIT-BIH dataset.     
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Figure 8: F1-scores for classification on PTB dataset after transfer learning from MIT_BIT trained models. 
PTB has two labels datasets either Normal (right) or Pathological (left). Results for model trained on 
augmented (dashed lines) and non-augmented (solid lines) training set are shown.  

Looking further at the resulting error matrix just for the models trained on the 2 new added layers, 
we can see that model 3 shows a strong ability to correctly classify the data, with Model 2 
performing poorly (Figure 9). Training more layers did not appear to improve Model 3’s 
performance and in most cases it deteriorated all models ability to classify the pathological data.  
In general though, these results are encouraging and with further tuning ongoing improvements 
could be made [1], [17]. 
 

 
 

Figure 9: Error matrixes for the 3 models explored showing the transfer learning results for models trained 
on augmented and non-augmented training sets. Blue shading indicates diagonal squares, red shaded color 
indicates noticeable misclassifications, grey shading indicates low error (<2%). The PTB Diagnostic dataset 
has two classes: normal and pathological. This requires the MIT-BIH trained models to bottleneck down to 
2 outputs. Note: these error matrixes are only representative of results from training 2 new added dense 
layers.  

3.4 Hyper parameters effect individual model performance  
Though the presented results used one set of hyper parameters as described in the methods, various 
other hyper parameter combinations were evaluated during the pilot testing. Therefore, it warrants 
to discuss the effects of hyper parameter tuning to increase transparency and further the possibility 
of improving on the findings. Changes in parameters such as batch size, augmentation sample set, 

 # of samples
Normal 2102 0 98% 2% 100% 0% 93% 7%

Pathological 809 1 12% 88% 100% 0% 69% 31%

Normal 2102 0 82% 18% 94% 6% 92% 8%
Pathological 809 1 45% 55% 73% 27% 29% 71%

0 1 0 1 0 1

Model 1 CNN Model 2 RNN Model 3 Opt.

Training on Non-Augmented Data 
Model 1 CNN Model 2 RNN Model 3 Opt.

Training on Augmented Data 
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or patience, each resulted in differences in the final outcomes, as presented by the error matrix in 
Figure 10.  Although further tuning and exploring the best combinations of these parameters is 
possible, there were limitations in the hardware the network was running on and the time 
constraints possible to evaluate long duration computations (Anaconda using a single-core 3.6 
GHz Dell OptiPlex 7020 computer with 16 Gb of RAM). I am acknowledging that it is possible 
that the results could be further improved upon, but I feel that the conclusions and end outcomes 
would likely not vary drastically from what was presented. Nevertheless, further work could lead 
to improvements in performance and should be explored.   
 

 
Figure 10: Error matrixes for 1 example model using variations in hyper parameters. Results show 
sensitivity to user selected hyper parameters, and further work is warranted.  

 
3.5 Comparison of results to literature   
 
The results presented in this project were compared to results from other sources. Specifically, the 
accuracy and F1-score were compared as shown in Table 5. The performance metrics achieved in 
this work are strong and compare well against what is found in recent literature. Although the 
classification ability of the proposed work is certainly good, caution must be taken when making 
direct comparisons of this sort. The test set used in this project was unbalanced, small, and only 
had several pathological signals (for example [3][7] evaluated 12 classes on over 50,000 patients). 
Making comparison to other models which may achieve lower F1-score and lower accuracy for 
this reason is deceptive and must be taken into account. For this specific problem, misclassification 
of pathological ECG has larger consequences then misclassifying a healthy normal ECG. Although 
this was not specifically taken into account in this project it is important to consider when 
evaluating the models ability to classify ECG signals.  
 
Table 4:  Comparing the accuracy and F1-scores obtained in this project to that of literature   

 
 

 
 

Normal 18118 0 82% 14% 1% 2% 1% 98% 2% 1% 0% 0% 93% 5% 1% 0% 0%
556 1 5% 94% 1% 0% 0% 9% 90% 1% 0% 0% 3% 96% 1% 0% 0%

1447 2 2% 3% 91% 4% 1% 2% 1% 96% 1% 0% 1% 1% 97% 1% 0%
161 3 0% 4% 2% 94% 0% 9% 1% 7% 83% 0% 5% 2% 11% 82% 0%

1608 4 0% 0% 0% 0% 99% 1% 0% 0% 0% 99% 0% 0% 0% 0% 99%
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Evaluation of  hyper-paramter tuning on outcomes
Batch size = 256 Patience = 10

Pathological

Augmentation = 20,000

Authors Citation accuracy % Architecture Authors Citation F1-score
F1-score 

(cardiologist)
2019 Mousavi et al. [13] 99.92* RNN+CNN 2020 Steenkiste et al. [17] 0.80-0.98
2017 Achaya et al. [11] 97.40 CNN 2019 Hannun et al. [3][7] 0.57-0.94** 0.53-0.91**
2016 Kiranyaz et al. [6] 99.10* CNN 2D 2019 Alfaras et al. [10 0.78-0.98
2010 Ye et al. [8] 99.91* Support Vector Machine

93.2-99.3 0.39-0.99Presented herePresented here
* more ECG classes explored then in this dataset and large sample size with augmentation

** Over 12 classes and dataset composed of over 50,000+ patients
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4.0 Conclusions  
In summary, the work presented here successfully met the objectives of the project. First, I was 
able to implement 3 neural network architectures for classifying ECG signals. All the proposed 
architectures had strong performance metrics and were able to classify the data to a high degree of 
accuracy. Second, I augmented the training set data and evaluated the performance effects. I found 
that the simple data augmentation approach led to an overall decrease in prediction performance. 
Lastly, I evaluated how well the models would perform when tested on a new data set. I found that 
the classification of normal ECG was strong but the classifying the pathological data proved to be 
more difficult. Further work is warranted in optimizing hyper parameters which would lead to 
improvements in the outcomes.  
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