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When executing a vertical jump, we can think of our legs behaving like a mechanical actuator that 
pushes against the ground to accelerate the body. In our work, we seek to understand how the 
mechanical characteristics of the leg actuator limit jumping performance and how higher vertical jumps 
could be enabled. To accomplish this, we design and test actuator models of varying morphological and 
physiological complexity and compare model predicted ground reaction forces to empirical data.  

Our goal is to determine the simplest model of the leg actuator that generates human-like 
ground reaction forces with model parameters that are not dependent on jump depth.

We collected ground reaction forces  from a range of squat depths in order 
for people to employ a wide range of leg actuator forces, lengths, and 
velocities to which to fit into our models. 

For some models, we algebraically solve for the optimal unknown 
parameter(s) : Fmax,Vmax,c, Xopt. More complex models require us to solve 
for the best-fit unknown parameters by numerical optimization. We 
perform a constrained optimization using nonlinear programming 
implemented with MATLAB’s optimization toolbox (fmincon, 2019a). 
 

We start from many feasible initial conditions to gain 
confidence that we are converging on a solution that 
approaches the global optimum . 

We set event detection in our differential equation 
solver (ode45) to terminate integration if a set of initial 
conditions drives the ground reaction force below zero.   

Using the determined optimal set of unknown 
parameters we compare the vertical ground reaction 
force of the model to that of emprical data. 

These results suggest that optimization of linear and single joint actuators with 
varied force physiology discover depth sensitive optimal solutions satisfying 
constraints. We consider sensitivity to depth as evidence of an insufficient model. After 
all, it is the same human jumping at both shallow and deep depths. Assembly of the multi 
actuated joint model is complete and simulations are currently underway. 
 

Although the linear model of the leg actuator 
well-predicted behavior, the optimal parameters 
were depth dependent. The reason for this is that 
for a linear actuator to meet our constraint that force 
is zero at the point of take-off, either the 
force-length or force-velocity characteristics must 
bring the force to zero. For most optimal solutions, 
we find that the width of the force-length parabola 
widens and contracts with depth in order for this 
constraint to be satisfied. 
 
 

Preliminary results for the single actuated joint 
model suggest optimal parameters have a 
dependence to squat depth. We are currently 
running simulations from which we hope to gain 
more intuition too understand how morphology 
might play a role in depth independent solutions.

Subjects : n =10                                   Jump Type : Squat Jump
Trials : 30 jumps (at varied depths) +   20 jumps (at self-selected depth)
Instruction : Jump as high as you can

We simulate models of different complexity by varying the morphological and physiological properties. 
We test morphological configurations that start from a simple point mass with un-segmented and 
massless legs to more complex morphologies with segmented legs and multiple joints .  

The physiology of the force (F) that accelerates the COM upwards during the jump simulation has a 
combination of the following mechanical properties: Force-Length, Force-Velocity and Activation 
dynamics (based on known properties of muscles). 

The number of unknown parameters can vary between models and at a most includes: maximum 
isometric force (Fmax), maximum velocity (Vmax), force-length parabolic width (c), and optimal operating 
length (Xopt). We evaluate the equations of motions of the morphology and combine that with the 
physiology to compare the model ground reaction forces to emprical data (see c. Model Optimization). 
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We perform a constrained optimization using nonlinear programming implemented with MATLABs 
optimization toolbox (fmincon). We employ MATLABs sequential quadratic programming algorithm 
which can recover from NaN or Inf solutions which the model sometimes can discover. To gain 
confidence that we are converging on a solution that approaches or is the global optimum, we perform 
the optimization from a large range of initial starting conditions. We set reasonable lower and upper 
bounds on the possible values of the unknown modelling parameters ( Fmax, Vmax , xopt and c). 
Additionally, we set non-linear constraints such that 1) the model predicted vertical GRF is 0% BW 
when the model leaves the ground and 2) the maximum extension length is equivalent to the total leg 
length of the subject. To minimize computational time, we employ parallel computing by solving from 
a range of initial conditions simultaneously using MATLABs MultiStart approach.
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