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Humans are remarkably agile [1]. We think of agility as the ability to rapidly execute motor 
control strategies that redirect body motion and reposition our limbs. When we navigate the 
environment, our legs interact with the ground producing reaction forces that either maintain or 
change the state of our motion. Each reaction force is a vector quantity with a force-magnitude 
and a force-position acting at a point on the body. Varying the force-magnitude of the force can 
result in linear changes to our motion. A runner seeking to increase their linear speed does so by 
selectively increasing the force-magnitude. Varying the force-position of the force can result in 
changes in the moment of the force, which has rotational effects on our motion. A gymnast 
wishing to initiate a front flip does so by selectively shifting the force-position. A greater 
control of agile motion is achieved through greater control of leg reaction force-magnitude 
and force-position. Modulating force rapidly and accurately contributes to greater agility. 
If we seek to design robots that exceed the agility of humans, it helps to understand the 
neuromechanical control mechanisms that enable agility as well as the factors that limit it. 

The goal of this research is to quantify the control performance (rise time, steady state 
error and steady state variability) of humans using their legs to voluntarily control the 
force-magnitude and force-position of external forces.

To study the performance of controlling force-magnitudes and force-positions with our legs, we 
have designed and built a rig that constrains subjects from motion while allowing them to exert 
variable forces onto the ground . We mount a force plate below the subject’s feet to measure the 
ground applied force-magnitudes and derive the medial-lateral and anterior-posterior 
force-positions [2]. We send signals from the force-plate to a data acquisition unit which 
displays to subjects’ real-time feedback of the vertical force-magnitude and of the medial-lateral 
and anterior-posterior force-position of the force applied to the ground. 
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We adjust the rig to fit subjects comfortably such that their torso is constrained and their arms 
and shoulders can selectively push against the rig. We constrain the height of the rig such that 
the subjects adapt a running stance posture.  For force-magnitude control, we have subjects use 
their foot to selectively try and match the magnitude of a prescribed step function by pushing or 
not pushing against the ground as the target trace appears on their screen.  For force-position 
control, we have subjects place their foot firmly on the force plate and ask them to match 
prescribed changes in either the medial-lateral or the anterior-posterior force-position by 
selectively shifting the pressure under their foot. We compare the prescribed signal to the 
empirical data to quantify control performance criteria which includes: rise time, steady state 
error and steady state variability using system identification tool in Matlab. 
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We are interested in quantifying the optimal performance of leg force control. To 
accomplish this, we determine the number of trials it takes for the performance of subjects 
to plateau.  We determine the learning rate by having subjects perform  many repeats of 
the same task (e.g. force-control at 1.5x body weight ). We then fit an exponential function 
to the error data, which gives us the learning rate, and use 3x the learning rate to  
determine the number of trials until people have stopped adapting [3].

We tested one subject who repeated 250 trials of 
a force-magnitude experiment at x1.5 body 
weight. We fitted an exponential model to our 
outcomes measures and found a learning rate of 
17.5 (95% CI [ 8.8, 26.2]) which corresponds to 
a subject adaption rate of 53 target steps (95% 
CI [ 26.4, 78.6]) at which point performance has 
plateaued. Shown on the figure is the 
steady-state error, which we present here as a 
representative measure of our three outcomes.

We collected pilot data of one subject performing 3 force-magnitude control experiments 
at 1.25, 1.5 and 2x bodyweight of force. We also collected force-position control data 
where one subject performed two anterior-posterior control experiments ( 3 and 5cm) and 
two medial-lateral control experiments (0.5 and 1cm). We presented real-time data to the 
subject such that the target changed roughly every 5s with 6 target steps occuring per 
minute. We then presented them with their error score and a 30 second break before the 
next trial. We collected 60 target steps of each condition and used the last 30 for analysis. 
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To keep subjects motivated during the experiment we created a simple game. Every minute (~ 
6 target steps per minute) subjects are shown a score board on their screen. The score board 
shows them an error rate (a weighted measure of our outcomes) of their performance in that 
minute.  We encourage subjects to achieve the lowest score possible (minimizing error) and 
have them compete against themselves throughout the experiment.
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While preliminary, the leg’s voluntary 
control of force seems remarkably 
poor in the context of the superior 

agility of humans.
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