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Abstract

Body segment parameters are inputs for a range of applications. Participant-specific esti-

mates of body segment parameters are desirable as this requires fewer prior assumptions

and can reduce outcome measurement errors. Commonly used methods for estimating par-

ticipant-specific body segment parameters are either expensive and out of reach (medical

imaging), have many underlying assumptions (geometrical modelling) or are based on a

specific subset of a population (regression models). Our objective was to develop a partici-

pant-specific 3D scanning and body segmentation method that estimates body segment

parameters without any assumptions about the geometry of the body, ethnic background,

and gender, is low-cost, fast, and can be readily available. Using a Microsoft Kinect Version

2 camera, we developed a 3D surface scanning protocol that enabled the estimation of par-

ticipant-specific body segment parameters. To evaluate our system, we performed repeated

3D scans of 21 healthy participants (10 male, 11 female). We used open source tools to seg-

ment each body scan into 16 segments (head, torso, abdomen, pelvis, left and right hand,

forearm, upper arm, foot, shank and thigh) and wrote custom software to estimate each seg-

ment’s mass, mass moment of inertia in the three principal orthogonal axes relevant to the

center of the segment, longitudinal length, and center of mass. We compared our body seg-

ment parameter estimates to those obtained using two comparison methods and found that

our system was consistent in estimating total body volume between repeated scans (male p

= 0.1194, female p = 0.2240), estimated total body mass without significant differences

when compared to our comparison method and a medical scale (male p = 0.8529, female p

= 0.6339), and generated consistent and comparable estimates across a range of the body

segment parameters of interest. Our work here outlines and provides the code for an inex-

pensive 3D surface scanning method for estimating a range of participant-specific body seg-

ment parameters.

Introduction

In biomechanics, body segment parameters (BSPs) are required inputs for a range of applica-

tions. BSPs include the masses of body segments, the positions of the center of mass of body

segments with respect to a segment reference frame, segmental mass moments of inertia with

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0262296 January 5, 2022 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kudzia P, Jackson E, Dumas G (2022)

Estimating body segment parameters from three-

dimensional human body scans. PLoS ONE 17(1):

e0262296. https://doi.org/10.1371/journal.

pone.0262296

Editor: Jeremy P. Loenneke, University of

Mississippi, UNITED STATES

Received: June 29, 2021

Accepted: December 21, 2021

Published: January 5, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0262296

Copyright: © 2022 Kudzia et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available in

the following repository: https://github.com/

pkudzia/Paper-BodySegmentParameter.

Funding: G.D received funding from NSERC

Canada Discovery Grant A6858. The funders had

https://orcid.org/0000-0002-6667-2913
https://doi.org/10.1371/journal.pone.0262296
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262296&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262296&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262296&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262296&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262296&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262296&domain=pdf&date_stamp=2022-01-05
https://doi.org/10.1371/journal.pone.0262296
https://doi.org/10.1371/journal.pone.0262296
https://doi.org/10.1371/journal.pone.0262296
http://creativecommons.org/licenses/by/4.0/
https://github.com/pkudzia/Paper-BodySegmentParameter
https://github.com/pkudzia/Paper-BodySegmentParameter


respect to a segment point, and body segment lengths. BSPs can serve as input data for engi-

neering prosthetics [1,2], for ergonomic design [3], and are required for inverse dynamics [4].

Although ‘generic’ datasets that are composed of measurements from a range of humans can

be used for approximating BSPs of people, direct in vivo participant-specific estimates provide

the highest level of accuracy [5]. Unfortunately, direct approaches to estimate BSPs can be

cumbersome and expensive. In this work, we developed and evaluated an easy-to-implement

method for indirectly estimating participant-specific BSPs using an inexpensive consumer

depth camera.

Participant-specific BSPs can reduce errors associated with biomechanical outcome mea-

sures. BSPs estimates are sensitive to the morphology, age, and gender of a person [6,7]. And

many biomechanical outcomes measures, such as kinetics, require BSP values to evaluate. Var-

iabilities of +/-5% in BSP estimates can have potentially meaningful effects on the resultant

outcomes [8–11]. When comparing different methods used to estimate BSPs, there may also

be differences in multiple of the BSPs estimates, further increasing uncertainty in the outcome

measures [12]. As some segment BSPs are difficult to estimate (e.g., trunk moments of inertia),

using the best available tools to get representative measures should be the goal. The use of par-

ticipant-specific BSPs estimates is especially important in open-chain or high acceleration

motions, such as running and jumping, where there are large body segment accelerations, and

in airborne movements, where there are no external forces [13]. Populations that have less

available data for making approximations using ‘generic’ datasets, such as pregnant women

[14], amputees [15], and children [6], may also meaningfully benefit from the use of partici-

pant-specific BSPs on outcome measure accuracy.

To estimate BSPs requires both density estimates and geometric properties. Medical imag-

ing is the gold standard approach for estimating density. Magnetic resonance imaging [16,17]

and computed tomography have been used to estimate in vivo BSPs of people by estimating

both the geometric and density profiles of the individual body segments [18]. The limitations

are that there is exposure to low dose radiation for CT scanning approaches, medical imaging

incurs high costs, and for certain populations, these approaches may not be feasible (e.g., preg-

nant women and children) [6]. Dual-energy x-ray absorptiometry has also shown potential in

this field [15] as it is less expensive and faster than the aforementioned approaches. But in gen-

eral, medical imaging is not readily available and is largely impractical for many laboratory-

based experiments seeking inexpensive and minimally involved methodologies.

Indirect methods are then a common approach used for estimating participant-specific

BSPs. One well-adopted indirect method is the use of regression models utilizing a person’s

mass and height as inputs. The convenience of application makes this approach practical, but

as BSPs are sensitive to morphology, age, and gender, the use of a regression model on persons

who differ from the population that the model is developed on can result in unrepresentative

estimates [19]. Some of the most commonly available regression models are derived using data

from cadaveric specimens of slender elderly men [20–22] and young adolescents [4]. More so,

height and weight as inputs to estimate mass moments of inertia and center of mass positions

can be prone to error, where small changes in morphology can create large changes in these

parameters, a feature that regression models are not well adapted to capture [23].

Geometrical models coupled with photographic approaches have addressed some of the

aforementioned limitations. In geometrical modelling, anthropometric measurements are

used to define modifiable shapes that resemble the body segments. Using mathematical princi-

ples, the BSPs can be estimated [24,25]. For such an approach, the accuracy of the estimated

BSPs most depends on the accuracy of the estimated geometry of the body segments, and less

so, but also on, the body segment density values used in the model [26]. What has deterred the

widespread use of geometric modelling is the extensive experimental time necessitated for
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acquiring anthropometric measurements [25,27]. As such, photographic approaches have

been coupled with geometrical models to digitally acquire meaningful anthropometric mea-

surements to then be used as inputs in geometric models [28,29]. One such approach, the ellip-

tical cylinder method, digitizes frontal and sagittal plane photographs to then approximate the

anthropometric measures of participants and model the 3D geometry of their body using

stacked elliptical cylinders. The elliptical cylinder method has been shown to be accurate to 2.0

±2.2% in estimating body volume when compared to volume estimates obtained using water

submersion (the gold standard in estimating volume by measuring the displacement of water)

[30]. However, the digitizing process can be extensive and if the use of a model to estimate the

3D geometry of the body can be mitigated, this would reduce assumptions made about the

morphology [31].

3D surface scanning provides an opportunity for acquiring the 3D geometry without using

a geometrical model. 3D surface scanning techniques using laser scanning [32], structured

light projection [33] and time of flight cameras [34] provide the tools to 3D reconstruct

objects, humans, and other animals. 3D surface scanning omits the use of predefined geomet-

rical shapes to estimate the morphology of the body and as a result does not require the use of

a 2D photographic method to make anthropometric measures. The Microsoft Kinect Version

1 (Kinect V1, Microsoft Corporation, Redmond, USA) is a low-cost close-range camera that

has shown potential for 3D volume estimation [35], for estimating participant-specific anthro-

pometric measurements [36], and in some preliminary work in estimating body segment

parameters [37–39]. Volumetric estimations using the Kinect V1 have been reported to have

errors of 0.04±2.11%, suggesting greater accuracy than commonly used geometric models

[38]. When comparing gold standard medical imaging to those estimated using an array of

Kinect V1 cameras (16 cameras in total) a high correlation in total body volume estimation

was found (R2 = 0.99) but the Kinect tended to underestimate volume [40,41]. Other 3D cam-

eras have also shown promise in this field of research [19,42–44]. The newest version the

Kinect Version 2 (Kinect V2, Microsoft Corporation, Redmond, USA) is more accurate than

the Kinect V1 in terms of depth perception and 3D estimation and boasts a higher resolution

[34,45,46]. In one recent study, intrinsic dinosaur skulls were 3D scanned using the Kinect V2

where the device was found to perform as well (reported depth resolution of 0.6mm) as indus-

trial-grade laser scanners that cost exponentially more. A consumer depth camera, such as the

Microsoft Kinect V2 then presents an opportunity to develop and evaluate an inexpensive

approach for estimating participant-specific BSPs while addressing some of the limitations of

the aforementioned BSP estimation methods.

In this project, our general goal was to use 3D surface scanning to estimate participant-spe-

cific BSPs. As 3D surface scanning has shown to be a promising approach for volumetric and

anthropometric measurement estimation, when used in conjunction with density values, it is

certainly possible to indirectly estimate the BSPs of humans. In this project, we had three spe-

cific aims. The first aim was to develop an experimental approach for collecting participant-

specific 3D scans using a readily available consumer depth camera, the Kinect Version 2

(Kinect V2, Microsoft Corporation, Redmond, USA). The second aim was to evaluate a 3D

body segmentation procedure for post-processing the 3D scans, and the third aim was to eval-

uate and assess the BSP estimates obtained using our proposed approach. To accomplish the

first aim, we used the Kinect V2 depth camera and performed repeated 3D scans on 21 human

participants. To accomplish the second aim, we used MeshLab, an open-source software [47],

to segment the body into 16 body segments. To accomplish our third aim, we wrote custom

software that evaluated the BSPs of the body segments acquired using our 3D scanning

method. We then compared the BSPs obtained using the proposed method to estimates

obtained using a camera-based geometrical modelling approach (the elliptical cylinder method
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(ECM) [29,48], and to estimates obtained using a regression model derived from a similar pop-

ulation sample.

Methods

Participants

We recruited 21 healthy adult participants for our study. The Queen’s University ethics board

approved the study and we obtained written consent from each participant before participa-

tion. We asked each participant to change into form-fitting shorts, a tight t-shirt, and to wear a

swim cap on their heads for the 3D scanning [31]. For each participant, we obtained their

body mass using a medical scale, measured their stature, asked for their age, and calculated

their body mass index (Table 1). We had no participant exclusion criteria.

Experimental setup

We used an inexpensive depth camera to perform 3D body scans. We mounted the camera, a

Kinect Version 2 (Kinect V2, Microsoft Corporation, 2015) onto a generic tripod and con-

nected it via USB 3.0 to our desktop computer. The Kinect V2 has a depth sensor that operates

at 30 Hz with a recommend minimum and maximum depth capture distance of 0.5m to 4.5 m

respectively [45]. We setup the computer to operate on Windows 8.1 running an Nvidia GTX

970 graphics processing unit, a Z97 Gaming 3 intel motherboard, with 16GB of RAM. We

used a 30-foot active USB 3.0 extension cord (SuperSpeed USB 3.0 Active Extension) to extend

the reach of the device from the workspace computer ensuring that the camera could freely be

moved around the room. We constructed a transparent platform for the participants to stand

on during their 3D scans (Fig 1). This platform served to maximize the viewing of the partici-

pant’s feet while minimizing the view of the floor surface. For 3D data acquisition, we used

Microsoft 3D Builder (Microsoft Corporation, 2015), free software that integrates with the

Kinect V2 and saves the 3D point cloud data for viewing in a user interface.

Segmentation boundaries

We placed anatomical landmarks on each participant to be used as body segmentation bound-

aries in post-processing. A trained operator identified landmarks in the frontal and sagittal

planes and placed body markers following a set of common guidelines (see S1 File). To mini-

mize volume artifacts, we used flat generic sticker markers 2cm in diameter. After we identi-

fied the anatomical landmarks, to allow for clear and repeatable segmentation boundaries, we

wrapped a band of non-reflective tape around each limb such that the frontal and sagittal land-

marks connected. This approach worked well in our pilot experiments and we used it here to

minimize variability in limb segmentation between repeated scans by providing reproducible

and clear endpoint boundaries for each body segment.

3D scanning

Participants stood on the transparent platform while we revolved the Kinect around them to

capture a 3D scan of their bodies. We asked each participant to stand with their feet separated

Table 1. Participants recruited for this study.

Participants Age (Years) Stature (m) Mass (kg) BMI (kg/m2)

Males (n = 10) 23.4±1.7 1.8±0.1 73.4±4.5 22.7±2.1

Females (n = 11) 22.3±2.4 1.7±0.1 70.1±8.1 23.3±2.3

https://doi.org/10.1371/journal.pone.0262296.t001
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and arms abducted at approximately 90˚. We found that this scanning posture allowed for

maximal visibility underneath the arms and in between the thighs, to minimize any scanning

errors resulting in skin folding when arms are together or thighs touching. Using a verbal cue

“we are now starting the 3D scan”, we vocalized to the participant the starting of the scan. At

this moment the computer operator initiated the acquisition software while a second operator

began to manually revolve the Kinect tripod around the participant. The operator revolved the

camera following an outlined path around the participant, holding the tripod at a vertical

height of 1m (Fig 1). After a full revolution of 360˚ around the participant, the operator lifted

the tripod to a higher position of ~2m by extending the legs of the tripod rapidly and contin-

ued walking around the participant until a second revolution was complete. In pilot experi-

ments, we found that by raising the Kinect tripod in the second revolution a more complete

view of the superior aspects of the upper body segments could be captured resulting in visually

more complete scans. As a result, each complete participant scan that we used for analysis con-

sisted of these two aforementioned revolutions. We asked participants to remain as still as pos-

sible during the scanning process and withhold from breathing deeply to minimize any

scanning artifacts [31]. Once the scan was finished, we informed the participants they could

relax. We immediately reviewed the quality of the scan on the computer and considered it to

meet our inclusion criteria if no visual obstructions or evident volume deformations were visi-

ble. These deformations could occur if the participants had moved or shifted their position

during the scan (e.g., swaying, or moving arms). For each participant, we sought to collect 3

scans that met these inclusion criteria. Each body scan took ~30 seconds and each participant

required at least 5 repetitions until 3 scans meeting our inclusion criteria were collected.

Fig 1. Experimental setup used for collecting 3D body scans. We manually revolved the Kinect V2 camera around the

participant following the scanning perimeter. Participants stood with their arms abducted on a transparent platform.

https://doi.org/10.1371/journal.pone.0262296.g001
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Data analysis

We exported all 3D scans and processed them for analysis. From Microsoft 3D Builder, we

exported each scan as a polygon file format (.ply) to preserve texture (i.e., colour of the pixels)

for segmentation. We then imported each scan into MeshLab (64-bit v.1.3.4) [47] an open-

source software we used for processing and editing the 3D data. In MeshLab, we took the

extraneous point cloud data, such as the floor and ceiling, and deleted it manually using the

graphical user interface features. Next, we aligned each scan such that the global coordinate

system in MeshLab best aligned with the anatomical planes of the body (Fig 2). This approach

helped us to ensure that segmentation along the frontal plane of the body was perpendicular to

the plane itself allowing us to produce repeatable segmentations. Following the aforemen-

tioned alignment procedure, we segmented each scan manually into a 16-segment model

using the segmentation boundaries as the guidelines (Fig 3). The body segments in the seg-

mentation include the left and right hand, forearm, upper arm, thigh, shank, and foot as well

as the head, torso, abdomen and pelvis. Finally, we saved each body segment as a Stanford tri-

angle format (.STL) and then imported this point cloud data into MATLAB (MathWorks,

2019a) for further analysis.

We wrote custom-written scripts to evaluate the BSPs of each body segment. We wrote

MATLAB scripts for evaluating the following outcome parameters: body segment volume,

Fig 2. We aligned imported 3D body scans such that body segment segmentation along the frontal plane was

perpendicular to this plane. We aligned the imported 3D scans to the MeshLab global coordinate system as shown.

https://doi.org/10.1371/journal.pone.0262296.g002
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segment mass, the mass moment of inertia tensor about the center of mass of each segment,

the longitudinal segment length, and the center of mass position of each segment. We calcu-

lated the total volume of each segment as the total encapsulation space of the point cloud data

[49]. We then determined the mass of each segment by multiplying its volume by a corre-

sponding uniform density value commonly used in literature (see S2 File for values). The den-

sity inputs we used were derived from cadavers of an older population [22] and from CT trunk

estimates of a more closely related population [18]. We then calculated the total body mass of

each participant by adding up the mass of each of the 16 body segments. We determined the

geometrical 3D center of the encapsulation space of each body segment and used this as the

estimated center of mass [49]. We took this approach as opposed to taking the average of all

the points that describe each segment, as we found that the latter may result in small errors in

the center of mass approximation [31]. We calculated the segment mass moments of inertia

Fig 3. From 3D scan to BSP output estimations. 1. A representative 3D scan in MeshLab. 2. We segmented each 3D scan into 16 individual body segments. 3.

Segmental coordinate system definitions for each body segment showing anteroposterior (red), mediolateral (green), longitudinal (blue) axes. Here the red dot is

the center of mass. We aligned the foot segment coordinate system such that the longitudinal axe was along the long length of the foot.

https://doi.org/10.1371/journal.pone.0262296.g003
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tensor using the center of mass as the reference frame. Although we estimated the full inertial

tensor, our primary interests were in comparing principal axes of this tensor along the three

orthogonal axes consisting of the anteroposterior (Iap), medio-lateral (Iml) and longitudinal

(Ilong) axes of each segment (for coordinate system definitions refer to Fig 3). We then deter-

mined the longitudinal segmental length by projecting a vector from the center of mass posi-

tion along the longitudinal axis of the segment until this line intersected a segment endpoint

on each end of the segment [31]. The total length was then evaluated as the distance from one

endpoint to the other endpoint. We used the estimated longitudinal length of the segment to

evaluate the position of the center of mass in terms of its distance from the proximal endpoint

of the segment (pCOM) (see S3 File for visual illustrations of longitudinal segment lengths and

proximal and distal endpoints of each body segment). We show the high-level overview of our

workflow for this experiment in Fig 4.

Comparison methods

We sought to compare BSPs evaluated using the proposed method to the elliptical cylinder

method [30,48]. In brief, to evaluate BSPs using the elliptical cylinder method, we placed two

digital cameras (Fujifilm Finepix AX 600) on tripods. Each camera was 5m from the partici-

pant at a height of 1m. One camera was oriented to capture the frontal plane and another the

sagittal plane. We hung meter sticks from the ceiling to serve as a tool for image calibration in

post-processing. The meter sticks were hung such that a horizontal and a vertical one was visi-

ble in each of the frontal and sagittal planes of the photographic images (see S4 File for illustra-

tion and full details). We asked each participant to stand on an inclined platform that is

commonly used in this photographic method to capture the feet [30,48]. We asked participants

Fig 4. Overview of our workflow. After placing anatomical landmarks on the participant, we used a Microsoft Kinect V2 and Microsoft Builder 3D to

collect repeated 3D body scans. We exported the acquired scans into MeshLab for removing extraneous data, globally aligning, and segmenting each scan

into 16 body segments. We then wrote custom MATLAB scripts to estimate the BSPs of each body segment.

https://doi.org/10.1371/journal.pone.0262296.g004
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to stand with their arms at their chest fully extended with their hands supinated and shoulders

flexed (see ref [31] for more details). Once the participant was ready, we asked them to stand

still while we captured the two images simultaneously, one from each camera. We imported

the images into the Slicer Project [50] software that has been adapted for the elliptical cylinder

method guidelines for estimating body segment parameters using the imported photographic

images. A single trained operator then digitized all of the photographs using this software.

Finally, we adjusted the coordinate systems for the output BSPs to best align with those evalu-

ated using our proposed 3D scanning method for comparisons (again refer to Fig 3 for specific

axes definitions).

We also compared our participant-specific data to estimates obtained using a regression

model. We used the regression model developed using data from a similar population pool [4].

The regression model by Zatsiorsky et al. was developed using a protocol that performed medi-

cal imaging on 100 adult Caucasian males (age: 23.8±6.2 years, height: 1.74±0.06 m, mass: 73

±9.1 kg, body mass index: 24) and 15 adult Caucasian females (age: 19.0±4.0 years, height: 1.74

±0.03 m, mass: 61.9± 7.3 kg, body mass index: 20.5) (regression equations in S2 File). To esti-

mate the body segment parameters of our participants, we used this regression model by using

each participant’s measured height and weight as inputs to the model. The similar population

that these equations are derived from when compared to the participants in this study makes

them a reasonable choice for use for comparison. When necessary, we adjusted the BSP axes

such that the output BSPs most closely aligned with those used in our proposed method (again

refer to Fig 3 for axes definitions).

Scanning of a cylindrical object

To get an approximation of the relative accuracy of the device and verify that our approach

was working as intended we scanned a cylindrical beam 25 times using a modified version of

our 3D scanning protocol outlined above (for beam values and calculations see S5 File). We

determined the mathematical geometrical expressions for the inertial parameters of the beam

including total volume, longitudinal length, the proximal center of mass position, and the

mass moments of inertia in the three orthogonal principal axes of the beam. We found that the

3D scanning estimates were within a reasonable range when compared to the theoretical pre-

dictions. For example, when comparing the total volume of the beam using the mathematical

expression (4964 cm3) to our methods (5173±204cm3) our 3D scanning method overestimated

volume on average by +4.2%. When comparing the longitudinal length (expression: 94.1cm;

our methods 93.6±20.7cm) and pCOM (expression: 50%; our methods: 49.8±0.9%) our

approach on average underestimated length by approximately -0.6% and pCOM by -0.3%

respectively. The orthogonal mass moments of inertia approximated using our approach dif-

fered on average by less than +1% (anteroposterior axes Iap = expression: 3676 kg/cm2; our

methods 3707±205 kg/cm2; mediolateral axes Iml = expression: 3676 kg/cm2; our methods

3702±205 kg/cm2) with the largest difference observed for the longitudinal axes of the beam of

+7.8% (longitudinal axes Ilong = expression: 42 kg/cm2; our methods 45.3±4.6 kg/cm2). This

experiment gave us confidence that the outputs we found were within a reasonable range of

what we expected to find.

Experimental outcomes

We assessed the outcome measures here using our proposed method on males and females

separately.

Total body volume. To determine the reliability in collecting 3D body scans we used each

participant’s total body volume obtained from each of the 3 scans which we refer to as Scan A,
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Scan B, and Scan C. We used a 1-way repeated-measures ANOVA to test for differences in

mean total body volume between repeated scans. We also calculated the 2-way mixed-effects

intraclass correlation coefficients (ICC) to provide estimates in the consistency of the esti-

mated outcomes. Following recommended guidelines we considered ICC (2,1) =< 0.5 as

poor, 0.50–0.75 as moderate, 0.75–0.9 as good, and>0.9 as excellent [51]. We calculated the

coefficients of variations (CV = mean/standard deviation x 100) of body volume estimation to

express a measure of normalized variability between repeated scans. We considered coeffi-

cients of variations >15% as not acceptable, 15–10% as acceptable, 10–5% as good, and<5%

as very good. As we could not find a consensus for acceptable values for coefficients of varia-

tion and arbitrarily determined acceptable values widely range between fields of research [52].

We therefore based our considerations using a commonly reported cut-off value of 15%.

Total body mass. We evaluated total body mass estimates obtained using our proposed

method, to those determined using the elliptical cylinder method, and to the medical scale

(our gold standard mass estimate). We used a 1-way ANOVA to test for differences between

the mean predicted body mass between the methods. We also evaluated the total body mass

agreements between our 3D scanning estimates and the medical scale using a Bland-Altman

approach [53]. Here we found the limits of agreement by comparing the differences between

the two methods and report these limits along with any found bias. A positive bias is an indica-

tion that the 3D scanning approach overestimates mass whereas a negative bias is an indication

of underestimating mass. To minimize possible effects and assumptions associated with our

use different estimated density values for each body segment to calculate total body mass, we

also evaluated the limits of agreement and bias using a standard uniform density value of 1000

kg/m3 (density of water) across all body segments.

3D segmentation reliability. We performed the 3D body segmentation following our

proposed protocol and evaluated BSPs for each body segment. The BSPs of interest were body

segment masses, mass moment of inertia estimates in the anteroposterior (Iap), mediolateral

(Iml), and longitudinal (Ilong) axes, segmental longitudinal lengths, and segmental centers of

mass. To evaluate the reliability of the estimates we obtained from these measurements we cal-

culated the coefficients of variations (CV) across the 3 separate segmentations of each body

segment for each BSPs of interest. We then compared the coefficients of variations between

segments across the three scans and used a 1-way repeated-measures ANOVA to test for dif-

ferences between the estimated BSPs across segmentations. Following the same approach as

with the total body volume, here we also calculated the 2-way mixed-effects intraclass correla-

tion coefficients (ICC) to provide estimates in the consistency of the estimated BSPs across seg-

mentations. We compared only the right side of the body for all segments that had both a left

and right side.

Body segment parameter estimates. We compared the values of the BSP estimates found

using our proposed method, against the BSPs estimated obtained using the ECM approach,

and to values obtained using the comparison regression analysis for each body segment (right

arm, right forearm, right hand, right thigh, right shank, right foot, head torso, abdomen and

pelvis). We used the mean values determined from the 3 scans when using our proposed

approach and compared this against the values obtained from the ECM approach, and the

regression estimates. We compared the mean segmental mass estimates, and the mass moment

of inertia estimates in the anteroposterior (Iap), mediolateral (Iml), and longitudinal (Ilong)

axes. For comparison of the estimated longitudinal segment lengths and proximal positions of

the segmental centers of mass the regression equations did not provide equations for length.

Therefore, we used mean values from Zatsiorsky and Seylanov for comparisons [4]. We used a

1-way ANOVA to test for differences between estimates obtained using our proposed method,

the ECM method, and the regression analysis for each BSP outcome.
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We performed all statistical tests using the MATLAB statistical toolbox. Unless otherwise

indicated, we report inter-participant means and standard deviations (SD). For the repeated-

measures ANOVAs we performed a Mauchly test for sphericity. If the sphericity assumption

was violated, we used epsilon adjustments factors. In the event of a statistically significant

main effect, we performed post-hoc pairwise comparisons with Bonferroni corrections [54].

We set the level of significance at 0.05 for all statistical analyses.

Results

High reliability in total body volume between repeated 3D scans

The total encapsulation volume between the three repeated 3D scans did not differ signifi-

cantly for both males (p = 0.1194) and females (p = 0.2240) (Fig 5) (for data refer to S6 File).

The total body volume variability exhibited between repeated scans was similar for both males

(SD 13.4 ± 8.9 cm2, CV 1.8 ± 1.1%) and females (S.D. 11.5 ± 5.9 cm2, CV 1.6 ± 0.8%) with CV

<3% (very good). We found high ICC estimates of ICC (2,1) = 0.96 for the males and ICC =

(2,1) = 0.99 for the females corresponding to excellent total body volume repeatability between

scans.

Reliable estimates of total body mass with 3D scans

We found that for males there were no significant differences (p = 0.8529) between the average

predicted total body mass estimated using the proposed method (74.5±4.5 kg), the ECM

method (73.8±4.7 kg), and medical scale (73.4±4.5 kg) (Fig 6). For female participants, we

found no significant differences (p = 0.6339) between the average predicted total body mass

estimated using the proposed method (73.2±8.0 kg), the ECM method (70.7±8.1 kg), and the

medical scale (70.4±8.1 kg) (Fig 6).

When comparing the total body mass predictions from all of our 3D scans to the medical

scale mass for males, we found limits of agreement from 2.8 to -5.0kg (+1.96 SD to -1.96S SD)

with a mean difference (bias) of -1.1kg (-1.5%). For females, we found limits of agreement of

0.64 to -6.9kg (+1.96 SD to -1.96 SD) with a mean difference (bias) of -3.1 kg (-4.4%)

Fig 5. Total body volume estimated with our proposed 3D method for both males and females. Comparison volumes between the three scans (Scan A-C) are

shown for each participant (coloured dot). The box is the 95% confidence interval around the mean (red line) and SD about the mean is shown (vertical blue line).

https://doi.org/10.1371/journal.pone.0262296.g005
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(p<0.001). Performing this analysis using a constant density of 1000 kg/m3 across all body seg-

ments resulted in results that led to the same conclusions.

3D body segment segmentation was most reliable for larger body segments

The body segmentation of each scan (i.e., 16 body segments per scan) took ~30–40 minutes

from importing to BSP estimations. The total time for post-processing decreased as we became

more proficient in applying the protocol. The main fraction of this time was in the manual

nature of the segmentations in MeshLab. The estimated BSPs were predominately repeatable

between the segmentation of the three scans (Table 2). We found significant differences

(p<0.05) between CV’s for some of the repeated measures of each body segment parameter

outputs (as indicated by an asterisk � in Table 2) with most of these differences observed in the

Fig 6. Body mass (kg) estimated with our proposed 3D method, the ECM method, and the medical scale for both males and females. Each participant

(coloured dot). The box is the 95% confidence interval around the mean (red line) and SD about the mean is shown (vertical blue line).

https://doi.org/10.1371/journal.pone.0262296.g006

Table 2. The mean coefficients of variations (%) for repeated body segmentation of repeated 3D scans.

Male Coefficients of variation (%) Female Coefficients of variation (%)

Segment Volume Iap Iml Ilong Length pCOM Volume Iap Iml Ilong Length pCOM

Head 3.0 7.0 6.3� 4.0 2.7� 0.8 4.0 8.7 7.4 5.8 2.9 2.0

Torso 2.9 5.1 6.2 4.0 3.8 1.7 3.6 6.8 7.4 4.1 4.1 1.6

Ab 2.9 4.9 6.1 4.0 2.8 0.8 2.8 4.0 5.4� 3.2 2.9� 2.0

Pelvis 4.4 8.2 6.6 6.0 4.7� 2.4 7.7 14.3 11.3 10.5 5.9 3.0

Thigh 4.6 8.1� 8.1� 8.0 2.4� 1.2 3.3 7.1 7.5 5.2 2.7 1.4

Shank 5.7 6.9 7.0 11.0 1.3 0.8� 3.5 5.1 5.3 6.1 1.1 1.4

Foot 13.2 19.4 19.1 25.0 5.1 5.1� 11.0� 16.1� 15.2� 19.3 3.9 4.7

Arm 9.5� 19.8 20.4 18.0 4.3� 2.4 7.4 11.7 12.5 14.4 3.0 3.5

Forearm 7.1 12.8 12.9 10.0 3.3 1.8 13.3 19.9 21.1 19.2 3.7 2.6

Hand 16.6� 30� 30.7� 23.7� 8.9� 4.9 20.2� 30.3� 30.9� 29.8� 9.2 3.9

BSPs were evaluated for each segmentation for both male and female participants. Here an asterisk (�) indicates a p< 0.05 for the repeated-measures comparisons.

https://doi.org/10.1371/journal.pone.0262296.t002
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smallest segments such as the hand and foot. These small segments also had the largest coeffi-

cients of variations for both the male and females and in some instances the CV values were

above our accepted cut-off (>15%) suggesting higher variability for these segments. The larger

body segments, such as the torso, had the lowest coefficients of variations throughout all of the

body segment parameters estimates. A visual representation of the segmentation for one repre-

sentative male and one female participant for three repeated scans and segmentations is pre-

sented in Fig 7. In most instances, we found high ICC estimates for all of the evaluated BSPs

across repeated segmentations corresponding to excellent reliability (ICC (2,1)>0.9) (see S6

File for full table). We did however find that for a few BSPs and for certain body segments the

ICC estimates were poor (ICC (2,1)<0.5), suggesting poor repeatability. This was observed

for both males and females and in most cases for the smaller distal body segments specifically

the foot, hand, and arm.

Fig 7. Three different scans (Scan A, Scan B, Scan C) and three individual body segmentations from a representative male and female participant are shown. The

colouring used for the segmented scan is meant to show clear segmentation borders between adjacent body segments.

https://doi.org/10.1371/journal.pone.0262296.g007
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Estimated body mass and mass moments of inertia compared well to

comparison methods

We found that the proposed method reliably estimated participant-specific BSPs with esti-

mates that were generally comparable to those determined using the ECM and the regression

modelling approaches. However, we did find differences between methods and across body

segments. The mean estimated body segment masses (Table 3) were close in magnitude when

compared against the comparison methods across all of the body segments with some clear dif-

ferences across several segments (e.g., Head, and Up-Trunk for males and Shank and Foot for

females). We also found some differences in the estimated mass moments of inertia in the

anteroposterior (Iapl), mediolateral (Ifrontal), and longitudinal (Ilg) principal axes from each seg-

ments center of mass reference frames again for similar body segments as mentioned above

(Table 4).

Differences in longitudinal length and center of mass estimates across

methods

We compared estimates for the longitudinal length (Table 5) and center of mass position from

the proximal endpoints (pCOM) (Table 6) using our approach, the ECM approach, and from

average values from literature. Although our method capability estimated length and center of

mass within a similar range to the other two methods, our comparison with the ECM approach

revealed significant differences across many of the segments for both male and female partici-

pants. As the longitudinal lengths were used to determine the pCOM estimates, differences

seen in longitudinal lengths estimates are also evident in the pCOM estimates.

Discussion

We evaluated an inexpensive 3D surface scanning approach for estimating participant-specific

BSPs. We used a readily available consumer depth camera, the Kinect V2 to collect repeated

3D body scans of 21 participants. Interaction with the participant for acquiring the 3D scan

took around 20 minutes (broken down to between 15–20 minutes for landmarking, and 30

seconds per scan). The post-processing from importing the 3D scan to outputted BSPs took

Table 3. Body segment mass estimates (mean±SD in kg) obtained using the proposed method, the ECM approach, and regression modelling for both male and

female participants.

Male Segment Mass (kg) Female Segment Mass (kg)

Segment Proposed ECM Regression Proposed ECM Regression

Head 5.6±0.4 ● 5.7±0.3 4 5.1±0.1 5.3±0.4 5.4±0.6 4 4.9±0.1

Up-Trunk 11.5±1.0 � 10.1±0.8 4 11.4±0.8 12.0±2.0 10.4±2.0 10.5±1.9

Abdomen 11.0±1.6 10.5±1.7 11.7±1.0 7.0±1.2 ● 6.4±0.9 4 9.1±0.7

Pelvis 9.2±0.8 ● 8.9±0.6 8.4±0.6 8.9±1.4 8.5±1.6 8.5±1.2

Thigh 10.4±0.8 10.4±1.0 10.5±0.7 12.0±1.4 11.7±1.5 10.7±1.3

Shank 3.5±0.4 3.6±0.5 3.2±0.2 3.9±0.5 ● 3.8±0.5 4 2.9±0.2

Foot 1.1±0.2 1.1±0.2 1.0±0.1 1.1±0.2 ● 1.0±0.1 4 1.5±0.1

Arm 2.1±0.2 2.3±0.3 4 2.0±0.1 1.9±0.2 2.0±0.3 4 1.7±0.1

Forearm 1.1±0.1 1.2±0.2 1.2±0.1 0.9±0.2 1.0±0.1 1.0±0.1

Hand 0.5±0.1 � 0.7±0.1 4 0.5±0.0 0.4±0.1 � 0.5±0.1 4 0.4±0.0

Significant differences (p<0.05) found in post-hoc analysis are reported as symbols. Where ‘�’ indicates a significant between the proposed and the ECM method, ‘●’

indicates a significant difference between the proposed and the regression modelling, and ‘4’ indicates a significant difference between ECM and regression modelling.

https://doi.org/10.1371/journal.pone.0262296.t003
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~30–40 min per 3D scan with the amount of time decreasing to about 25 minutes as we

became proficient in the protocol. Using our software, we estimated the participant-specific

BSPs using the segmented scans and compared these BSP results to those found using the two

comparison methods. Our approach was straightforward to implement, low cost, and pro-

duced reliable total volume estimates between repeated 3D body scans. We found that there

were no significant differences between the total volume when comparing repeated scans for

both male and female participants with excellent ICC values. When comparing total body

mass estimates to our gold standard medical scale, we found no significant differences in mass

estimates for both sexes. We found limits of agreement for males from 2.8 to -5.0kg (+1.96 SD

Table 4. Moment of inertia estimates (mean±SD in kg cm2) obtained using the proposed method, the ECM approach, and regression modelling for both male and

female participants.

Male Iap (kg cm2) Female Iap (kg cm2)

Segment Proposed ECM Regression Proposed ECM Regression

Head 289±36 � 248±35 280±12 261±38 � |● 197±34 226±1

Up-Trunk 1839±258 � 1237±175 4 1708±158 1874±517 � 1355±456 1434±376

Abdomen 1037±244 962±276 4 1234±174 503±134 ● 438±96 4 732±68

Pelvis 635±100 650±104 700±82 620±149 641±262 709±144

Thigh 1682±183 ● 1866±288 2104±209 2028±431 2086±459 2082±477

Shank 394±67 454±84 420±52 392±90 457±116 354±73

Foot 48±14 49±9 47±5 43±17 41±11 39±8

Arm 156±35 � 197±36 4 135±13 138±32 146±32 126±15

Forearm 55±12 � |● 70±12 67±5 43±15 49±12 54±12

Hand 8±5 � |● 17±4 14±1 6±2 �|● 11±3 9±1

Iml (kg cm2) Iml (kg cm2)

Head 331±4 �|● 278±39 303±14 323±5 �|● 255±46 259±11

Up-Trunk 1057±170 �|● 825±115 684±80 1319±385 �|● 977±318 4 648±193

Abdomen 754±194 683±187 790±116 335±108 ● 290±74 4 540±65

Pelvis 688±112 ● 680±107 4 548±63 645±178 647±180 516±101

Thigh 1756±189 ● 1959±291 2107±213 2126±449 2213±467 2077±449

Shank 397±68 463±87 406±53 392±93 430±170 350±71

Foot 45±11 48±9 43±5 40±15 38±15 33±6

Arm 148±37 � 205±37 4 121±12 129±28 132±63 100±23

Forearm 55±13 � 68±11 62±5 42±15 44±16 53±12

Hand 8±5 � 14±3 4 9±1 5±2 � 9±3 4 6±1

Ilg (kg cm2) Ilg (kg cm2)

Head 200±26 186±26 202±8 190±23 199±60 176±21

Up-Trunk 1632±255 � 1040±152 4 1418±156 1563±477 � 1015±348 1205±297

Abdomen 1018±237 959±253 1121±198 616±198 553±143 4 736±79

Pelvis 767±117 �● 631±66 606±70 753±207 575±185 739±184

Thigh 413±60 403±61 408±49 533±110 ● 509±118 4 346±64

Shank 54±11 ● 56±13 67±6 72±15 97±111 52±6

Foot 14±5 �|● 8±2 4 1±1 12±4 ● 10±8 4 37±2

Arm 32±7 ● 27±6 4 40±3 30±8 43±44 41±13

Forearm 8±3 ● 10±3 12±1 6±2 10±12 8±1

Hand 3±2 �|● 6±1 6±1 2±1 � 4±2 3±1

Significant differences (p<0.05) found in post-hoc analysis are reported as symbols. Where ‘�’ indicates a significant between the proposed and the ECM method, ‘●’

indicates a significant between the proposed and the regression modelling, and ‘4’ indicates a significant between ECM and regression modelling.

https://doi.org/10.1371/journal.pone.0262296.t004
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to -1.96S SD) with a mean difference (bias) of -1.1kg (-1.5%). For females, we found limits of

agreement of 0.64 to -6.9kg (+1.96 SD to -1.96 SD) with a mean difference (bias) of -3.1 kg

(-4.4%) (p<0.001). Our proposed 3D segmentation protocol and post-processing of 3D scans

worked well. Using open-source software MeshLab, we were able to segment each scan into 16

individual body segments. We found that our proposed method compared against the other

two methods but there were some differences across methods for some segments and BSPs.

For example, we found that the smallest body segments (e.g., foot and hand) tended to signifi-

cantly differ between comparison methods across all BSPs. More so, longitudinal length and

center of mass estimates were significantly different between most of the segments when com-

paring the 3D scanning method and ECM approach. Our work here provides the framework

Table 5. Longitudinal length estimates (mean±SD in cm) obtained using the proposed method and the ECM approach for both male and female participants.

Male Length (cm) Female Length (cm)

Segment Proposed ECM Avg. Value Proposed ECM Avg. Value

Head 25.6±0.8 � 28.9±0.9 24.3±# 26.0±1.3 � 28.4±1.4 24.6±#

Up-Trunk 24.9±1.5 � 23.8±1.6 24.2±# 28.3±2.9 27.3±2.7 22.8±#

Abdomen 20.2±1.9 20.5±2.1 21.6±# 13.6±1.0 15.9±4.5 20.5±#

Pelvis 23.4±1.2 � 18.8±1.7 25.2±# 22.6±1.4 � 21.4±2.3 �±#

Thigh 46.3±1.5 47.6±3.4 42.2±# 47.2±2.4 � 42.6±3.6 36.9±#

Shank 40.2±1.4 � 41.5±2.0 44.0±# 38.5±2.6 � 40.4±3.0 43.9±#

Foot 24.5±1.0 � 22.3±0.4 25.8±# 23.7±1.5 � 21.6±1.3 22.8±#

Arm 28.1±2.0 28.2±1.8 28.2±# 29.0±2.3 � 26.7±2.6 27.5±#

Forearm 25.7±0.9 � 27.4±1.2 26.9±# 24.8±2.5 26.1±2.0 26.4±#

Hand 15.3±1.9 � 20.0±1.3 18.8±# 14.2±1.7 � 19.0±1.1 17.0±#

Significant differences (p<0.05) found in post-hoc analysis are reported as symbols. Where ‘�’ indicates a significant difference between the proposed and the ECM

method. Average values of longitudinal length estimates published by (Paolo de Leva, 1996) (as shown in Table A2.11 and Fig A.3 in [4] are shown from reference.

(Here # indicates no data).

https://doi.org/10.1371/journal.pone.0262296.t005

Table 6. Center of mass position from the proximal endpoints (pCOM) (mean±SD in %) estimated using the proposed method and the ECM approach for both

male and female participants.

Male pCOM (%) Female pCOM(%)

Segment Proposed ECM Mean Value Proposed ECM Mean Value

Head 49.6±0.9 � 46.5±1.2 50.0±2.2 48.3±1.3 � 45.4±1.8 48.4±#

Up-Trunk 54.8±0.9 � 58.8±2.7 50.7±2.2 57.2±1.1 56.6±1.9 50.5±#

Abdomen 48.6±1.0 � 51.2±1.5 45.0±2.1 50.0±1.6 48.6±9.2 45.1±#

Pelvis 36.5±1.1 � 52.3±5.0 35.4±3.0 36.6±1.3 � 45.8±6.2 34.8±#

Thigh 44.0±1.0 44.7±3.5 41.0±1.9 44.7±1.3 � 38.2±4.8 46.1±#

Shank 40.6±1.1 40.0±1.9 44.0±2.8 40.9±0.8 41.2±1.3 40.3±#

Foot 45.1±1.9 � 39.1±2.5 44.2±3.7 44.6±2.3 38.2±2.1 40.1±#

Arm 41.9±1.4 48.2±29.8 42.3±4.2 40.9±1.0 41.4±3.5 44.0±#

Forearm 41.2±1.6 � 42.9±1.6 42.7±3.3 42.7±1.5 43.9±2.5 42.6±#

Hand 40.7±1.2 40.7±2.5 36.9±4.9 42.9±2.7 40.6±4.1 35.0±#

Significant differences (p<0.05) found in post-hoc analysis are reported as symbols. Where ‘�’ indicates a significant difference between the proposed and the ECM

method. The regression equations provided by Zatsiorsky and Seluyanov provide pCOM in mm along the longitudinal axis without providing the longitudinal length.

As such we report the average values from the study adjusted to best match our definitions of pCOM (based on Table 4.4 and Table A2.5 in [4]) (Here # indicates no

data).

https://doi.org/10.1371/journal.pone.0262296.t006

PLOS ONE Estimating body segment parameters from three-dimensional human body scans

PLOS ONE | https://doi.org/10.1371/journal.pone.0262296 January 5, 2022 16 / 23

https://doi.org/10.1371/journal.pone.0262296.t005
https://doi.org/10.1371/journal.pone.0262296.t006
https://doi.org/10.1371/journal.pone.0262296


and useful insights for the use of a Kinect V2 for 3D scanning and estimating participant-spe-

cific BSPs.

This study has several limitations. One limitation is the manual nature of segmenting the

3D scans and the reliance here on the placed landmarks. The landmarks had a high contrast

between the participant and their skin, providing us with segmentation boundaries. Poor visi-

bility of these landmarks and the tape used to define the boundaries create an opportunity for

segmentation boundary errors. Although we generally found coefficients of variations and

ICC values within an acceptable range between repeated segmentations, when the visibility of

the segmentation boundary was poor, we had to rely on our best judgment to make the seg-

mentation. Developing a more automatic segmentation process could reduce the time require-

ments in post-processing and may remove the need for the lengthy process of physically

placing skin markers (15–20 min) and then using the placed markers for segmentation [55]. A

second limitation is the scan duration. Each 3D scan took ~30 seconds where the participant

was required to stand still. This is enough time for body sway and the lung’s movement during

breathing to perturb the measured volume. To minimize this effect, we asked participants to

remain still and refrain from deeper breathing, but this requirement can be problematic when

working with populations that may have difficulty in standing still (e.g., children, amputees, or

pregnant women). Although our proposed method did work, integrating multiple cameras

could reduce scan time requirements to seconds and may further improve our scanning proto-

col and results especially for the distal and smaller body segments that are harder to maintain

still [19,44,48]. A third limitation is the lack of a gold standard criterion for comparing BSPs.

Indeed, for total body mass estimates, we use the medical scale values, and these are a strong

criterion for comparison. However, when we compare the BSP estimates from our proposed

work to those estimated using the elliptical cylinder method (ECM) and the regression-based

modelling, both of these comparison methods have their own underlying assumptions. For

example, the use of 2D images in the elliptical cylinder method compared to our 3D approach

to estimate the longitudinal length and proximal center of mass estimates maybe have contrib-

uted to some of the observed differences. Comparing the BSP estimates obtained using our

methods to estimates obtained using medical-based scanners, such as dual-energy x-ray

absorptiometry (DEXA), would provide a stronger point of comparison. This was unfortu-

nately out of reach for us but should be considered in future evaluations of our methods.

The absence of heterogeneity in our participant pool, the smaller sample size, and the lack

of a gold standard criterion for many of the BSP estimates limit the generalization of our

results. Our findings suggest that the proposed protocol, software, and hardware are reliable

for estimating a range of body segment parameters on humans. We find that our approach is

efficient (quick and inexpensive) and the BSPs estimates are within a comparable range to our

comparison methods and to literature. Our approach also provides the framework of 3D scan-

ning for BSP estimation on humans and may bring value to those interested in this type of

work and to the community at large. However, the sensitivity to the effects of differences in

participant BMI, age, height, and other anthropometric characteristics on estimated BSP val-

ues is not yet clear. Although we do not have reason to believe that our methods would not

work well with a more heterogeneous participant pool, further work with more participants

will be required to appropriately quantity this before such conclusions can be made. Compar-

ing the BSP estimates on our participants obtained using our methods to a gold standard crite-

rion such as those obtained from a DEXA method would further increase the generalization.

The depth camera has certain limitations that need to also be considered. Firstly, when we

encircled the Kinect V2 around our participants, their arms came significantly closer to the

camera than any other body part. This may have contributed to some of the lack of texture and

finer detail observed in some of the segments (Fig 8). The optimal accuracy of the Kinect V2
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depth perception is in the 0.5-2m range away from the participant, where the camera has

depth perception errors of less than 2mm [56]. Scanning distances of less than 0.5m away,

which would be the case for participants who had an arm’s length of more than 0.5m, enter a

suboptimal and more error-prone field of view [56]. 3D scanning of curved, concave, and

sharp edges is also a known limitation with 3D scanning technologies. Error-prone surfaces

may be smoothed out when perceiving depth [34,56]. To minimize this in our protocol, we

asked participants to keep their hands open during scanning as a means of preventing concav-

ity when the hands are supinated. However, visual occlusion of other concave surfaces is still

evident, such as on the face (Fig 8). For females with larger breasts, the gap between the breasts

may have been overestimated, especially as all female participants wore a shirt. As our

approach estimated upper trunk masses about ~2kg higher for females (Table 5) when com-

pared to the ECM approach, these overestimations may be partially due to sensor limitations

for convex regions and gaps. Lastly, the depth perception of the device has been shown to be a

function of operating time where after ~40 minutes of operating and warming up, the depth

Fig 8. Top view of full-body, head and hand scans. 1. An example showing lack of texture in the scan on the upper

arm regions. 2. Varied degree of detail in the head region with concave surfaces appears as filled in. Further to the right

head suggests minor sway, as facial features are distorted more so than the head to the left. Hands showing varied

degree of detail.

https://doi.org/10.1371/journal.pone.0262296.g008

PLOS ONE Estimating body segment parameters from three-dimensional human body scans

PLOS ONE | https://doi.org/10.1371/journal.pone.0262296 January 5, 2022 18 / 23

https://doi.org/10.1371/journal.pone.0262296.g008
https://doi.org/10.1371/journal.pone.0262296


perception reaches a steady-state value [45]. Although depth differences between using the

device right away and using the device after it has been warmed up are suggested to be small

(~0.003m2), the effects of this were not included in our study but may be important to consider

when using this device for other work.

Our work progresses on currently available tools, but further improvements need be con-

sidered before implementation. Our 3D scanning approach has the advantage that we directly

measure the 3D shape, unlike regression modelling, other commonly used methods, or the

elliptical cylinder method which uses 2D images to infer 3D shapes [4,25,30,57]. By working

directly in 3D our approach has the added advantage that assumptions about geometry can be

minimized. Although we choose to use uniform density values, working in 3D also has the

added advantage that non-uniform density functions can be implemented into the workflow,

speaking to the flexibility of a surface scanning approach with programmatic and easily modi-

fiable inputs [58]. Indeed, we also found that our 3D scanning system had a measurement bias

in underestimating total body mass for males (bias = -1.1 kg (-1.5%)) and females (bias = -3.1

kg (-4.4%)) when compared to the medical scale. A similar order of magnitude bias was

reported for the use of older Kinect models for estimating volume and length [35,41]. In one

study, the trunk BSPs estimated using a geometrical model and several other approaches were

compared to gold standard DEXA. There the authors found mean differences between the

gold standard and the other approaches for trunk mass, center of mass, and moments of inertia

ranging from overestimating by 18.3±15.1% to underestimating by -30.2±7.1% [58]. Although

the existence of a bias in our approach cannot be discounted and should be carefully consid-

ered, the range of this measurement error appears to be less than the possible errors from

other widely used methods. By making our work open source we strive to provide the commu-

nity with these tools and facilitate its use for further development to reduce bias and improve

accuracy.

In our work here we evaluated a low-cost, easy-to-implement 3D scanning method that can

be widely adapted for implementation. 3D scanning provides an exciting opportunity for esti-

mating a wide range of body segment parameters without the need for geometric models or

making predefined assumptions about the body, the age, or ethnic background of a person. As

BSPs are difficult to estimate directly, especially for inner body segments like the trunk, our

approach here provides a convenient solution. As we have shown, our system is able to provide

users with estimates of participant-specific BSPs. The body segmentation method we devel-

oped can also be adapted to be used with 3D scans acquired using different cameras and differ-

ent approaches, not limiting researchers to the use of a specific camera for 3D scanning.

Although there is no limitation on how the 3D scan is acquired as any STL file can be used

with our methods, future work could focus on the evaluation of other devices for acquiring 3D

scans. A 3D scanning approach enables measurements and estimated BSPs to be specific to the

person of interest without reliance on prior assumptions on the geometry of their bodies.
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